Bulletin of the Tomsk Polytechnic University. Industrial Cybernetics. 2025. Vol. 3. No. 3. P. 44-50
Mumtaz A. et al. Application development with Agile and Django-React framework: a case study on automated reliability ...

UDC 004.42
DOI: 10.18799/29495407,/2025/3/93

Application development with Agile and Django-React framework:
a case study on automated reliability testing with bus ticketing system

A. Mumtaz?, A. Haider1™, M. Haroon?, A. Ahmed!

1 Lahore Garrison University, Lahore, Pakistan
2 University of Technology, Xi’an, China

Hsyedalihaider.ciit@gmail.com

Abstract. Software start-ups have shown their ability to develop and launch innovative software products and services.
Startups start with a small and highly motivated team and each individual works together to design, develop and launch new
products. Small, motivated teams and uncertain project scope make startups good candidates for adopting Agile practices.
The Agile method follows an iterative approach which can be implemented to make product flexible and to deal with the
changing demands of customers. We explore the impact with adoption of Agile methodologies and Django-React framework
on reliability of software. We developed the Bus Ticketing System by means of Django-React framework and Agile methodol-
ogies. Operational profile based testing is performed to observe the state change of each module and usability testing is done
by checking the functionality of each module. Generative artificial intelligence is applied for automated test case generation
for operational profile based testing. Our results of the study verify the fusion of Django-React Framework with Agile meth-
odologies for software development help developers to create scalable, efficient and optimized web applications. The use of
React for front end development and Django for backend development with agile methodologies provide the high-quality end
product. The operational profile based testing with generative artificial intelligence and usability testing support the reliabil-
ity of software which leads to customer satisfaction.

Keywords: Django frameworks, React, test case automated generation, agile development, Generative Al

For citation: Mumtaz A., Haider A., Haroon M., Ahmed A. Application development with Agile and Django-React framework: a
case study on automated reliability testing with bus ticketing system. Bulletin of the Tomsk Polytechnic University. Industrial
Cybernetics, 2025, vol. 3, no. 3, pp. 44-50. DOI: 10.18799/29495407/2025/3/93

YAK 004.42
DOI: 10.18799/29495407/2025/3/93
[Mudp cnenuansHoctu BAK: 1.2.2,2.3.8

Pa3pa6oTka npujioKeHuu C McroJib3oBaHueM Agile u pperimBopka
Django-React: npuMep aBTOMaTU3UPOBAHHOI'O TECTUPOBAHUSA
Ha/le>KHOCTH CUCTEMbI PO A>K1 AaBTOOYCHbIX OUJIETOB

A.Mymras?, A. Xaiigep!™, M. Xapyn?, A. Axme!

1YHueepcumem Jlaxopckozo zapHu3oHa, l[lakucmad, 2. /laxop
2 CuaHbckull mexHooz2uyeckuil yHugepcumem, Kumati, 2. Cuamo

HMsyedalihaider.ciit@gmail.com

AHHoTanus. CtapTansl B 06J1aCTH IPOrpaMMHOr0 06ecledyeHHst MPOIEMOHCTPUPOBAJIH CBOK CIOCOGHOCTh pa3padaThiBaTh
Y 3aIlyCKaTh MHHOBAL[MOHHbIE IPOrPaMMHbIE MPOAYKTHI U ycayrd. CTapTanbl HAYMHAKTCS € HEGOJIBIION U BBICOKO MOTHBH-
pPOBAHHON KOMaH/ibl, U KaXKAbIH COTPYAHHUK paboTaeT BMECTe HaJ NPOEKTHUPOBAHHEM, pa3paboTKON M 3alyCKOM HOBBIX
npoAyKToB. He6oJibliiie MOTHBUPOBAaHHbIE KOMaH/(bl U HeONpe/ieJIeHHbIH 00'beM NPOEKTA JieJal0T CTapTanbl XOPOLUIMMHU
KaH/AWJaTaMU /s BHEApeHUsl MpakKTUK Agile. MeTo Agile ciiesyeT UTepaTUBHOMY MOJXO/Y, KOTOPbIH MOXXET GbITh peasu-

44

HW3Bectnss ToMcKOro NoJMTEXHUYECKOTO YHUBepcuTeTa. [I[pombinieHHas kubepaetuka. 2025. T. 3. Ne 3. C. 44-50
MywmTa3s A. u ap. Pa3zpaboTka npuioxxeHu# ¢ ucnosb3oBanveM Agile u dppeiimBopka Django-React: nmpumep ...

30BaH, YTOObI C/Ae/aTh NPOAYKT F'MOKHUM M COOTBETCTBOBATh MEHSIOLIMMCS TPe6GOBaHUAM KJIWEHTOB. Mbl HccieyeM BJus-
HUe NPUHSATUS TUOKUX MeToZ0Joruil U ¢peliMBopka Django-React Ha HaZieXKHOCTh TPOrpaMMHOro o6ecrneyeHust. Mbl pas-
paboTajiu cucTeMy NMpoJaku OUIETOB Ha aBTOOYC ¢ moMolbio PppeliMBopka Django-React u ru6kux metoosioruit. Tectupo-
BaHMe Ha OCHOBE OIlePallHOHHOr0 NPoQuIs BINOJHAETCS JJ/1s1 HA6JII0leHNS 32 U3MEHEHHEM COCTOSTHUA KaX/A0Tr0 MOAyJId, a
TeCTHpPOBaHHe YA00CTBAa UCIOJb30BAHUSA BBINOJHAETCA NMyTeM NMPOBePKH QYHKIHOHAIBHOCTH KaXAoro mMoay.s. 'eHepa-
TUBHBIM HCKYCCTBEHHBIN MHTE/JIEKT IPUMEHAETCA J/Is1 aBTOMATU3UPOBAaHHON reHepalMy TeCTOBbIX CJIy4aeB /Il TECTUPO-
BaHMSA HA OCHOBE ONepalOHHOro npodus. Pe3ybTaThl Hallero Hccjae0BaHUA NOATBEPKIAIOT, YTO coyeTaHUe PppelM-
Bopka Django-React ¢ ru6KMMU MeTOZ0JOTMAMU Pa3paboOTKHU MPOrpaMMHOro obecrneyeHus: IoMoraeT pa3paboTyuKaM Co-
3/laBaTh MaclITabupyeMble, 3¢deKTUBHBIE U ONTUMHU3MPOBaHHbIe BeG-Npu/oxkeHus. Mcnosb3oBanue React g1a pponTena-
pa3paboTku u Django f/1 6aKeHA-pa3paboTKH B COUETAHUM C THOKUMHU METO/0/I0THAMH 00ecredyrBaeT BbICOKOe KayeCTBO
KOHEYHOro npoJykTa. TecTupoBaHHe Ha OCHOBE OIlePaLHOHHOr0 NPoduIs € UCIOJIb30BaHUEM MeHEPaTUBHOIO UCKYCCTBEH-
HOT'0 MHTEJUIEKTA U 10326 UM TH-TECTUPOBaHHe 06ecreyrBaeT Ha/leXXHOCTh TPOIrPAaMMHOT0 06ecreyeHus, YTO CIOCO6CTBYeT
MOBBILIEHHIO YA0BJETBOPEHHOCTH KIHEHTOB.

KiroueBble cioBa: dpeiitMmBopku Django, React, aBToMaTH3MpOBaHHAsA reHepalys TECTOBBIX CJy4aeB, FHOKas pa3paboTka,
reHepaTuBHbI MU

Jnsa nutupoBaHMA: Paspa6oTka npusioxkeHUH c ucnosb3oBaHueM Agile u dpeiimBopka Django-React: npumep aBTOoMaTH-
3MPOBAHHOTO TECTUPOBAHUS HAZEKHOCTHU CHUCTEMBl NMPOJAAXKHU aBTOOYCHbIX 6useToB / A. Mymras, A. Xaiizep, M. XapyH,
A. Axmep // U3BecTust ToMCKOTro NMOJIMTEXHUYECKOT0 YHUBepcuTeTa. [IpoMbliieHHass kKubepHeTHka. - 2025. - T. 3. - Ne 3. -

C.44-50.DOI: 10.18799/29495407/2025/3/93

Introduction

The software industry has undergone a paradigm
shift with the widespread adoption of Agile methodolo-
gies and modern full-stack frameworks, enabling faster
delivery of high-quality applications. However, despite
the proven benefits of Agile in iterative development
and customer-centric approaches [1], challenges persist
in ensuring software reliability under dynamic require-
ments and frequent iterations [2]. Traditional testing
approaches often struggle to keep pace with Agile rapid
development cycles, leading to potential defects in pro-
duction environment [3].

Furthermore, while frameworks as Django
(backend) and React (frontend) provide a robust foun-
dation for web application development [4], their inte-
gration within Agile workflow introduces complexities
in maintaining system reliability, scalability, and test
automation. Conventional manual testing methods are
insufficient for large-scale applications, necessitating
automated, intelligent testing solutions that align with
Agile continuous integration and delivery (CI/CD)
pipelines [5].

A critical gap exists in empirical research evaluat-
ing how Agile methodologies, combined with Django-
React frameworks, software reliability when augment-
ed with Al-driven testing. The fewer studies addressed
the role of Generative Artificial Intelligence (GAI) [6]
based test automation in enhancing reliability under
Agile iterative development model [7]. There are lim-
ited practical strategies for implementing operational
profile-based testing [8] in dynamic web applications.
This study addresses these gaps by investigating the
application of Agile methodologies and the Django-
React framework in developing a Bus Ticketing Sys-
tem, with a focus on automated reliability testing using
GAl.

The primary aim of the research presented is to:

e evaluate the impact of Agile methodologies and
Django-React framework integration on software
reliability;

e develop and validate an Al-driven automated test-
ing approach for operational profile-based reliabil-
ity assessment;

e provide empirical evidence on the effectiveness of
Agile-Django-React development in a real-world
case study (Bus Ticketing System).

The presented research covers: integration of Agile,
Django-React, and Al-based testing into a cohesive
development framework. Application of GAI for au-
tomated test case generation, reducing manual effort,
improves test coverage and reduces the cost. Empirical
validation through a case study, demonstrates the prac-
tical benefits of the proposed approach. In order to
achieve the objectives of study the Agile (Scrum)
methodology was adopted for iterative development
and continuous feedback. The Django-React stack fol-
lowed for building a scalable, full-stack web applica-
tion and the operational profile-based testing was done
to assess reliability under real-world usage scenarios
with GAI based test case generation. At last usability
testing is performed to validate functional correctness
and user experience.

This research contributes to both academic and in-
dustry through:

e providing a structured framework for Agile-
Django-React development with embedded Al test-
ing;

e demonstrating the feasibility of Al-powered test
automation in improving software reliability;

o offering practical insights for startups and enter-
prises adopting Agile and modern web frameworks.

Bulletin of the Tomsk Polytechnic University. Industrial Cybernetics. 2025. Vol. 3. No. 3. P. 44-50
Mumtaz A. et al. Application development with Agile and Django-React framework: a case study on automated reliability ...

By bridging the gap between Agile development,
full-stack frameworks, and GAlI-driven testing, this
study provides a comprehensive, empirically validated
approach for building reliable, high-performance web
applications.

The rest of the study is organized as follows:
Introduction — discusses Agile, Django-React, and
Al in testing.

Materials and Methods — details the development
and testing approach.

Results — analyzes reliability and usability out-
comes.

Conclusion — summarizes findings and future re-
search directions.

Materials and Methods

The presented study employs an empirical case
study methodology to investigate the integration of
Agile development practices [9] with the Django-React
framework [10] and Al-driven automated testing [11]
in the context of a Bus Ticketing System. The research
adopted a mixed-methods approach, combining quanti-
tative reliability metrics [12] (defect density, test cov-
erage, failure rates) with qualitative usability assess-
ments [13] (user feedback, development team retro-
spectives). The study is structured into three primary
phases: initially Agile-based software development,
secondary full-stack implementation using Django and
React, and at last Al-augmented reliability testing.

The Agile methodology followed the Scrum
framework [14], selected for its structured yet flexible
approach to iterative development. Each sprint cycle
lasts two weeks, with a cross-functional team. The
product backlog is prioritized based on critical func-
tionalities such as user authentication, ticket booking,
and payment processing, while daily stand-up meetings

Design web Perform testing

ensure continuous alignment. At the end of each sprint,
a retrospective analysis is conducted to refine process-
es and address bottlenecks.

The Bus Ticketing System is built using a decou-
pled architecture, separating the backend (Django)
from the frontend (React) in order to enhance scalabil-
ity and maintainability. The backend is developed us-
ing Django REST Framework, which provides a robust
foundation for API-driven development. SQLite3 is
used for developing data models which include entities
such as User, Bus, Route and Booking. Each model is
optimized for ensuring efficient query performance
through indexed fields. The frontend, developed in
React.js, employs component-based architecture for
reusability and state management. Critical components
include the Login/Register module, Bus Listing,
Schedule, Location, Category, and Booking Form. The
frontend and backend communication are facilitated
through RESTFUL APIs, with Axios handling HTTP
requests.

To ensure software reliability, a hybrid testing
strategy is implemented, combining operational pro-
file-based testing (for reliability assessment) and usa-
bility testing (for functional validation) as visualized in
Fig. 1. The operational profile is derived from real-
world usage patterns of bus ticketing systems. Key user
workflows are identified and weighted by frequency
and criticality: Login (30% frequency, High criticali-
ty); Bus Search (25%, High); Seat Booking (20%, Crit-
ical); Payment Processing (15%, Critical) and Admin
Dashboard (10%, Medium). A Markov Chain model is
applied to simulate state transitions (e.g., log-
in—search—booking—payment), ensuring test scenar-
ios mirror actual user behavior. A fine-tuned GPT-4
model is employed to automate test case generation,
addressing the limitations of manual scripting.

Perform reliability

application and
perform testing

h

(operational profile,
usability testing)
*

(3o)y——

Complete obtained |

Y

testing

QOutcome
Achieved

collect Failures (e.g.

Neo

Data exception)

reliability
Yes - ;
arge
@ Complete

Fig. 1.
Puc. 1.

Operational profile based testing process

46

HPOHECC mecmupogaHus Ha 0CHogee ohepAdyUOHHO20 Hp0¢ll./1ﬂ

HW3Bectnss ToMcKOro NoJMTEXHUYECKOTO YHUBepcuTeTa. [I[pombinieHHas kubepaetuka. 2025. T. 3. Ne 3. C. 44-50
MywmTa3s A. u ap. Pa3zpaboTka npuioxxeHu# ¢ ucnosb3oBanveM Agile u dppeiimBopka Django-React: nmpumep ...

The steps for test case process are represented in
Table 1.

Table 2.

Ta6auya 2. HHcmpymeHmbl U mexHo/102UU

Tools and technologies

Tools/Technologies
Category/Kareropus WHcTpyMeHTbl/TexHo0r MK
Table1. Test case generation Backend/Bakanz Django 4.2, SQLite3
Frontend R 18
Ta6auya 1. [Ipoyecc eeHepayuu mecmosbix c/ay4aes BHewnwmii nuTepdeiic eact
Process phase Testing/TecTupoBanue PyTest, GPT-4 API
Tasks/3 -
daza nponecca asks/3apaum DevOps GitHub Actions, Docker

e OpenAPI/Swagger specifications of Django
endpoints

Input provision Cnenudukannn OpenAPl/Swagger KOHEUHBIX

BBosHOe noJioxe- Toyek Django

HHEe o Historical defect logs from similar projects

HcTopuyeckue xXypHasbl AeHEKTOB U3 aHa-

JIOTUYHBIX IPOEKTOB

Prompt “Generate five negative test cases for the
engineering /api/bookings/ endpoint, covering: invalid seat
OnepaTuBHOE selections, over-capacity booking attempts,
npoekTHpoBaHue | unauthenticated access attempts”

e Automated execution via PyTest
ABTOMaTH3MPOBAHHOE BBINOJHEHNE Yepe3
PyTest

e Manual audit of 20% of cases to prevent Al
hallucinations
Pyunoit ayaut 20 % ciy4aeB JJ15 IpefoT-
BpallleHus ra/uiiouuHanui MU

Output validation
[IpoBepka BbIXOA-
HbIX JaHHBIX

The testing pipeline is integrated into a continuous
integration/continuous delivery (CI/CD) workflow us-
ing GitHub Actions, ensuring automated execution
upon each code commit. The workflow includes:

e Dbackend testing (unit tests (Django’s TestCase),
integration tests (APl endpoints), Al-generated sce-
nario validation);

o frontend testing (component tests, end-to-end tests);

e cross-validation (selenium for Ul consistency
checks, postman for API contract verification).

Quantitative metrics are used to measure system ro-

bustness by Mean Time Between Failures (MTBF) [15]

and Defect Density [16], computed by equations (1),

(2) respectively.

Total Operatinal Time
MTBF = £ ——— D
Number of Failures
. Total Defects
Defect Density = 2)

Size in Kilo Lines of Code’

Usability Testing Protocol is developed as a diverse
user group (n=20) — comprising 10 tech-savvy and 10
novice users — performs predefined tasks as complete a
ticket booking in within three minutes and recover
from a simulated payment error. Performance is evalu-
ated using the Task Success Rate (%), Time-on-Task
(seconds) and System Usability Scale (SUS) Scores.
Data encryption is done to ensure data integrity and
privacy the user data is anonymized in SQLite3. The
Al-generated test cases reviewed by humans to miti-
gate bias and informed consent is obtained from usabil-
ity test participants. The study followed the software
stack represented in Table 2.

To ensure reproducibility and validity, the study:

e benchmarks results against 1SO-25010 [17] soft-
ware quality standards;

e friangulates data from Agile logs, test metrics, and
user feedback;

e documents all experimental parameters for peer
verification.

Results

The implementation of Scrum-based Agile method-
ologies significantly improved development efficiency.
Over six sprints (12 weeks), the team delivered 28 user
stories, achieving a 92% sprint completion rate. Key
observations include: velocity stabilization as team
velocity increased from 18 story points/sprint in sprint
1 to 26 points/sprint by sprint 6, indicating improved
workflow adaptation; defect reduction as early sprints
had 14 critical defects, decreasing to 3 defects by sprint
6 due to refined test-driven development (TDD) prac-
tices and customer feedback integration as the 87% of
requested feature changes were incorporated within
one sprint, demonstrating Agile responsiveness. The
decoupled architecture demonstrated strong perfor-
mance metrics as shown in Table 3.

The 178 test cases generated manually, and 342 ex-
ecutable test cases generated through GAI with 41%
more edge cases (e. g., overbooking, expired sessions).
The coverage increase is presented in Table 4.
Al+Manual testing shown 93% line coverage and 88%
branch coverage which is higher than manual testing.

The Al-generated tests identified 29 critical defects
missed by manual scripts and the false positive rate is
7% (manually reviewed/corrected). MTBF rate In-
creased from 48 hours (pre-Al) to 310 hours post-Al
integration, which shows higher defect detection effi-
ciency of proposed approach.

The 20-participant usability study yielded, task suc-
cess rates.

The outcomes of usability testing are represented in
Table 5. The Average score: 84/100 (“Excellent" per
[18]) on System Usability Scale (SUS). The Novice vs.
Tech disparity having 12-point gap (79 vs. 91) high-
lighted the need for better error messaging.

Bulletin of the Tomsk Polytechnic University. Industrial Cybernetics. 2025. Vol. 3. No. 3. P. 44-50
Mumtaz A. et al. Application development with Agile and Django-React framework: a case study on automated reliability ...

Table 3.

Ta6auya 3. IIpouzsodumeabHocms cucmemvol Django-React

Django-React system performance

Table 6. Comparative analysis of three commercial ticket-

ing platforms in controlled tests

Ta6auya 6. CpasHumenvHbIll AHAU3 MPEX KOMMEPYECKUX 6u-
JIeMHbIX NAAMEGBOPM 8 KOHMPOAUPYEMbIX MECMAX

. Presented study Platform A | Platform B
Metric
MeTpuueckas [IpexncraBieHHOE [natdop- [natdop-
HccieloBaHue Ma A[19] ma b [20]
Booking success
rate
[TokasaTesb 98.2% 95.1% 89.7%
YCIHELIHOCTH
GpOHUPOBAHUS
API error rate
YacToTa omu- 0.8% 2.3% 4.1%
60k API
SUS score
Onenka SUS 84 76 69

Authentication: 220 £15 ms
AyTtenTudukauus: 220 15 mc
Booking processing: 380 25 ms
APl response under 500 concurrent users
times (Load tested via Locust)
Bpewms orBera | O6paGoTka GpOHMPOBAHUS:
API 380 +25 mc npu 500 ogHOBpe-
Backend MEHHBIX [10JIb30BaTeJIAX
(Django) (Harpyska npoTecTHpoBaHa ¢
metrics MeT- nomobio Locust)
PUKH 63KIH- SQLite maintained <10 ms query
na (Django) latency for indexed searches
Database (10,000+ bus records)
efficiency SQLite nogaepxuBas 3afiepKKy
JddexTun- 3anpocoB <10 Mc AJs1s1 UHAEKCH-
HOCTb 6a3bl pOBaHHBIX IOUCKOB (6oJ1ee
JLaHHBIX 10 000 3amucel MHKHBI)
Zero deadlocks observed during
stress testing
Initial render: 1.2 s
Page load (lighthouse score: 94/100)
speeds [TepBoHayasnbHbIK peHgep: 1,2 ¢
Frontend CkopocThb (ouenka Lighthouse: 94/100)
(React) met- 3arpysku Booking form hydration: 600 ms
rics CTpaHULY BponupoBanue ¢popMbl rugpa-
MeTpuKHU Tayuu: 600 mMc
dpoHTEHAA Redux reduced prop-drilling
(React) State complexity by 68% versus pure
management
T'ocyaap- React state
Redux cHU3UJ C/I0XKHOCTB Gype-
CTBEHHOE o
yIpaBeHne HUs Ha 68 % 0 CpaBHEHHUIO C
4YUCTBIM cocTOssHUEM React
Table 4. Coverage increase on line and branch with

Al+Manual testing

Ta6auya 4. YeeauyeHue nokpblmusi 8 pexcume OHAAUH U
duauana ¢ nomowwo HH+pyuHozo mecmupo-

8aHUA
Manual testing Al+Manual Gain
Metric Py4yHoe U+ [pu-
MeTpuyeckasi TeCTHpPOBaHHE PykoBoAcTBO poct
%
Line coverage 78 93 +15
[ToKpbITHE TUHUU
Branch coverage
[lokpeiTHE OUIH- 65 88 +23
aJioB
Table 5. Usability testing results
Ta6auya 5. Pesyssmamel mecmuposaHusi ydo6cmea uc-
no/b308aHUs
Tech-savvy users | Novice users
TexHUYEeCKU O/~ HauuHnato- Overall
Task/3anaya KOBaHHbIE M0JIb- mue noib- | O6muin
30BaTeNn 30BaTesn
%
Complete booking
3aBeplIUTh 100 85 92.5
GpOHUpOBaHKE
Error recovery
BocctaHoBieHue 95 70 82.5
nocJie OKU6KU

48

The comparative analysis of Platform A [19] and
Platform B [20] is represented in Table 6 and visual-
ized in Fig. 2. The Django-React stack modularity
proved ideal for Agile iterative demands: backend sta-
bility as the Django ORM prevented 89% of data-layer
bugs and frontend agility as React component reuse
enabled rapid Ul revisions (avg. 2 hrs/change). GAI
impact was most pronounced in Regression testing as
detected five version-breaking bugs in post-
deployment, created 42% more stress tests than manual
methods. This empirical study demonstrates that Agile-
driven Django-React development, when augmented
with Al-based testing, achieved higher reliability with
93% test coverage, faster iteration with 26 story points
per sprint and superior usability with a score of 84.

Platform Comparison Across Key Metrics

%22
51
9.7
a0
I - = I
P —

Booking Success Rate API Error Rate
Metric

Platform
== Presented Study
w= Platform A [17]
we Platform B [18]

100

@
g

760

@0

@
2

Value

&

o
=]

0

SUS Score

Fig. 2. Platform comparison across booking success rate,
API error rate and SUS score

Puc. 2. (CpasHeHue naamgopmM no nokasamenr ychewHo-
cmu 6poHUposaHusi, nokazamesr owubok APl u no-
kazamesio SUS

Conclusion

The development of the EasyRide bus ticketing sys-
tem with Django-React fulfilled the demands of Agile
by backend stability as Django ORM prevented 89% of
data-layer bugs and frontend agility as the React com-

HW3Bectnss ToMcKOro NoJMTEXHUYECKOTO YHUBepcuTeTa. [I[pombinieHHas kubepaetuka. 2025. T. 3. Ne 3. C. 44-50
MywmTa3s A. u ap. Pa3zpaboTka npuioxxeHu# ¢ ucnosb3oBanveM Agile u dppeiimBopka Django-React: nmpumep ...

ponent reuse enabled rapid Ul revisions (avg. 2
hrs/change). The adoption of GAI for test case genera-
tion reduces the test cost for project. GAI based gener-
ated test cases created 42% more stress tests than man-
ual methods which verifies the higher reliability of sys-
tem. In addition, usability testing is performed, and the
scores are assigned according to each module behavior
along with their limitation. 11% of generated tests re-

quired manual tweaking for domain specificity and the
informed Ul text/flow revisions in sprints 5-6.

In the future more features can be added for the en-
hancement of bus ticketing system with the implemen-
tation of Internet of Things (1oT) with GAI. To make
the system more user-friendly and convenient the use
of 1oT with more fine-tuned GAI will lead to customer
satisfaction, reliability and performance optimization

of the system.

REFERENCES

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Bankoff K.P., Mufioz R., Pasini A., Pesado P. Quality 4.0 in software engineering: incorporating scaled Agile insights to a
framework proposal. Computer Science — CACIC 2023. CACIC 2023. Communications in Computer and Information Science.
Eds. P. Pesado, W. Panessi, J.M. Fernandez. Cham, Springer, 2024. Vol 2123. pp. 179-194. DOI: https://doi.org/10.1007/978-3-
031-62245-8 13

Fatiha EI Aouni, Karima Moumane, Ali Idri, Mehdi Najib, Saeed Ullah Jan. A systematic literature review on Agile, Cloud, and
DevOps integration: challenges, benefits. Information and Software Technology, 2025, vol. 177, pp. 107569. DOI:
https://doi.org/10.1016/j.infsof.2024.107569

Alenezi M., Akour M. Ai-driven innovations in software engineering: a review of current practices and future directions. Applied
Sciences, 2025, vol. 15, Iss. 3, pp. 1344. DOI: https://doi.org/10.3390/app15031344

Goh H.-A., Ho C.-K., Abas F.S. Front-end deep learning web apps development and deployment: a review. Applied intelligence,
2023, vol. 53, pp. 15923-15945. DOI: https://doi.org/10.1007/s10489-022-04278-6

Khan H.U., Afsar W., Nazir S. Revolutionizing software developmental processes by utilizing continuous software approaches.
The Journal of Supercomputing, 2024, vol. 80, pp. 9579-9608. DOI: https://doi.org/10.1007/s11227-023-05818-8

Sengar S.S., Hasan A.B., Kumar S. Generative artificial intelligence: a systematic review and applications. Multimedia Tools and
Applications, 2025, vol, 84, pp. 23661-23700. DOI: https://doi.org/10.1007/s11042-024-20016-1

Kothamali P.R. Ai-powered quality assurance: revolutionizing automation frameworks for cloud applications. Journal of
Advanced Computing Systems, 2025, vol. 5, no. 3, pp. 1-25. DOI: https://doi.org/10.69987/JACS.2025.50301

Song Yi, Zhang Xihao, Xie Xiaoyuan, Liu Quanming, Gao Ruizhi, Xing Chenliang. ReClues: representing and indexing failures
in parallel debugging with program variables. Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering, 2024, article no. 111, pp. 1-13. DOI: https://doi.org/10.1145/3597503.3639098

Valdés-Rodriguez Y., Hochstetter-Diez J., Diaz-Arancibia J., Cadena-Martinez R. Towards the integration of security practices
in agile software development: a systematic mapping review. Applied Sciences, 2023, vol. 13, Iss. 7, pp. 4578. DOI:
https://doi.org/10.3390/app13074578

Tereshchenko K.O. Development of an automated system for recognizing audio signals using Django and React. js. Zaporozhye,
Zaporozhye National University, 2023. 49 p. (In Ukrainian).

Freeman L., Robert J., Wojton H. The impact of generative Al on test & evaluation: challenges and opportunities. FSE
Companion '25: Proceedings of the 33rd ACM International Conference on the Foundations of Software Engineering, 2025, pp.
1376-1380. DOI: https://doi.org/10.1145/3696630.3728723

Behera A.K., Agarwal P. Modeling software reliability with power law testing effort function under operational uncertain
environment. Journal of Software: Evolution and Process, 2025, vol. 37, Iss. 7, e70037. DOI: https://doi.org/10.1002/smr.70037
Hertzum M. Concurrent or retrospective thinking aloud in usability tests: a meta-analytic review. ACM Transactions on
Computer-Human Interaction, 2024, vol. 31, no. 3, pp. 1-29. DOI: https://doi.org/10.1145/3665327

Grebi¢ B., Stojanovi¢ A. Application of the Scrum framework on projects in IT sector. European Project Management Journal,
2021, vol. 11, no. 2, pp. 37—46. DOI: https://doi.org/10.18485/epm|.2021.11.2.4

Duer S., Wozniak M., Pas J., Zajkowski K., Bernatowicz D., Ostrowski A., Budniak Z. Reliability testing of wind farm devices
based on the mean time between failures (MTBF). Energies, 2023, vol. 16, Iss. 4, pp. 1659. DOI:
https://doi.org/10.3390/en16041659

Neufelder A.M. Estimating software reliability without test hours. Annual Reliability and Maintainability Symposium (RAMS).
Destin, FL, USA, 2025. pp. 1-6. DOI: 10.1109/RAMS48127.2025.10935010

Mochamad Chandra Saputra, Satrio Agung Wicaksono, Satrio Hadi Wijoyo, Prasetya Naufal Rahmandita, Buce Trias Hanggara.
Quality analysis of an interactive programming learning platform based on ISO/IEC 25010 using a string-matching approach on
user reviews. J-INTECH (Journal of Information and Technology), 2025. vol. 13, no. 01, pp. 192-202. DOI:
https://doi.org/10.32664/j-intech.v13i01.2003

Bangor A., Kortum P.T., Miller J.T. An empirical evaluation of the system usability scale. International Journal of Human—
Computer Interaction, 2008, vol. 24, Iss. 6, pp. 574-594. DOI: https://doi.org/10.1080/10447310802205776

Luhur M.A., Nugroho S., Kurt R.E., Achmadi T. Integration of an independent e-ticketing system into a common e-ticketing
platform in ferry services. IOP Conference Series: Earth and Environmental Science, 2021, vol. 649, 012041. DOI:
10.1088/1755-1315/649/1/012041

Ujjalacharya, dhan-gaadi. Available at: https://github.com/ujjalacharya/dhan-gaadi (accessed 21 June 2025).

49

Bulletin of the Tomsk Polytechnic University. Industrial Cybernetics. 2025. Vol. 3. No. 3. P. 44-50
Mumtaz A. et al. Application development with Agile and Django-React framework: a case study on automated reliability ...

Information about the authors

Aiman Mumtaz, Bachelor's Degree in Software Engineering, Lahore Garrison University, Block B, DHA Phase 6
Sector C, Avenue 4, Lahore, 54920, Punjab, Pakistan. aimanmumtaz743@gmail.com;

Ali Haider, Lecturer, Lahore Garrison University, Block B, DHA Phase 6 Sector C, Avenue 4, Lahore, 54920, Pun-
jab, Pakistan. syedalihaider.ciit@gmail.com, https://orcid.org/0000-0001-8868-2111

Muhammad Haroon, PhD Scholar, Xi’an University of Technology, bld. NO. 5, Jinhua South Road, Xi'an, 610101,
Shaanxi, China. 1201214002 @stu.xaut.edu.cn; https://orcid.org/0009-0002-2670-7496

Adnan Ahmed, Lecturer, Garrison University, Block B, DHA Phase 6 Sector C, Avenue 4, Lahore, 54920, Punjab,
Pakistan; adnanahmed755@gmail.com; https://orcid.org/0009-0004-4862-1292

Received: 10.07.2025
Revised: 05.09.2025
Accepted: 30.09.2025

UHopmanusa 06 aBTOpax

AiimaH Mymra3, bakasiaBp B 06J1aCTH NMPOrpaMMHOM HHXKeHepHuHU, Kadeapa NPorpaMMHON UHXKeHepUH, YHHU-
BepcUTeT rapHu3oHa Jlaxopa, [lakucran, [lengxkab, 54920, Jlaxop, ABeHio 4, DHA ®aza 6 Cektop C, Bsiok B.
aimanmumtaz743@gmail.com

Anu Xaiipep, npenojaBaTesb Kadeapbl NIPOrpaMMHON UH)XXeHepHUH YHUBepPCUTeTa rapHu3oHa Jlaxopa, [laku-
craH, Ilenmkab, 54920, Jlaxop, ABeHio 4, DHA ®aza 6 Cekrtop C, Bsiok B. syedalihaider.ciit@gmail.com,
https://orcid.org/0000-0001-8868-2111

MyxamMaa, XapyH, AoKTopaHT LlIko/bl KOMIBIOTEPHBIX HAYK U TeXHOJIOTMM CHaHbCKOTO TEXHOJOTHMYECKOro
yHuBepcutTeTa, Kwuraii, 610101, I[snbcu, Cuanp, ya. [xubuxya, 5. 1201214002@stu.xaut.edu.cn;
https://orcid.org/0009-0002-2670-7496

ApHaH Axme[, npenosaBaTesib Kapeapbl NPOrpaMMHOM MH)XKeHEepUH YHUBepCUTeTa rapHusoHa Jlaxopa, [laku-
craH, Ilenmxkab, 54920, Jlaxop, ABeHwo 4, DHA ®aza 6 Cektop C, Bsok B. adnanahmed755@gmail.com;
https://orcid.org/0009-0004-4862-1292

[Moctynuaa: 10.07.2025

[MpunsaTa: 05.09.2025
Ony6simkoBaHa: 30.09.2025

50

