УДК 517. 913 DOI: 10.18799/29495407/2023/3/34 Шифр специальности ВАК: 05.13.16

Математическое моделирование некоторых одноимпульсных полетов космического аппарата

Н.Ю. Исаченков[⊠]

Ярославский государственный университет им. П.Г. Демидова, Россия, г. Ярославль

[™] isnickjust@gmail.com

Аннотация

В данной работе исследуется движение космического аппарата, стартующего с поверхности Земли с разными скоростями, в рамках задачи пяти тел «Солнце-Земля–Луна–Марс-тело с ничтожно малой массой» с тесным сближением с поверхностью Луны, а также достижением планеты Марс, и движение космического аппарата, начинающего движение с поверхности Земли с третьей космической скоростью, в рамках модели ограниченной плоской круговой задачи семи тел «Солнце-Земля–Марс-Юпитер–Сатурн–Уран-тело с ничтожно малой массой» с тесными сближениями с поверхностью Марса, Юпитера и достижением планеты Уран. **Цель:** подбор начальных условий положений некоторых небесных тел и возможных начальных скоростей космического аппарата для его перелета с Земли к некоторым планетам. **Методы:** компьютерная алгебра (система «МАРLE 17»); численные эксперименты; численное интегрирование дифференциальных уравнений методом Рунге–Кутты. **Новизна:** определение начальной скорости и начальных положений планет для достижения космическим аппаратом, стартующим с Земли, некоторых планет. **Научнопрактическое значение.** Результаты работы могут быть использованы в практике межпланетных перелетов, а также в научно-исследовательской, учебной и методической работе преподавателей астрономии.

Ключевые слова: Солнечная система, ограниченная круговая задача N тел, численное интегрирование методом Рунге-Кутты.

Для цитирования: Исаченков Н.Ю. Математическое моделирование некоторых одноимпульсных полетов космического аппарата // Известия Томского политехнического университета. Промышленная кибернетика. – 2023. – Т. 1. – № 3. – С. 14–20. DOI: 10.18799/29495407/2023/3/34

UDC 517.913 DOI: 10.18799/29495407/2023/3/34

Mathematical modeling of some single-pulse space car flights

N.Yu. Isachenkov⊠

Yaroslavl State University named after. P.G. Demidov, Yaroslavl, Russian Federation

[™] isnickjust@gmail.com

Abstract

This paper examines the movement of a spacecraft launching from the surface of the Earth at different speeds, within the framework of the five-body problem "Sun-Earth-Moon-Mars-a body with negligible mass" with a close approach to the surface of the Moon, as well as reaching the planet Mars. The paper considers as well the movement of a spacecraft starting from the surface of the Earth at the third escape velocity, within the framework of the model of a limited plane circular problem of seven bodies "Sun-Earth-Mars-Jupiter-Saturn-Uranus-a body with negligible mass" with close approaches to the surface of Mars, Jupiter and reaching the planet Uranus. **Aim.** Selection of initial conditions for positions of some celestial bodies and possible initial speeds of the spacecraft for its flight from the Earth to some planets. **Methods.** Computer algebra (MAPLE 17 system), numerical experiments, numerical integration of differential equations using the Runge-Kutta method. **Novelty.**

Determination of the initial speed and initial positions of the planets for reaching some planets by a spacecraft starting from the Earth. **Scientific and practical significance.** The results of the work can be used in practice of interplanetary flights, as well as in the research, educational and methodological work of astronomy teachers.

Keywords: Solar system, restricted N-body circular problem, numerical integration by the Runge–Kutta method.

For citation: Isachenkov N.Yu. Mathematical modeling of some single-pulse space car flights. *Bulletin of the Tomsk Polytechnic University. Industrial Cybernetics*, 2023, vol. 1, no. 3, pp. 14–20. DOI: 10.18799/29495407/2023/3/34

Основная часть

Представим векторное дифференциальное уравнение движения тела с ничтожно малой массой в форме (1) – с одной независимой переменной v_E для расчетов одноимпульсных полетов к Марсу [1].

$$\left(\frac{d^{2}\boldsymbol{r}}{dv_{E}^{2}}\right)\omega_{E}^{2} = -\frac{Gm_{s}\boldsymbol{r}}{r^{3}} - \frac{Gm_{E}\left(\boldsymbol{r}-\boldsymbol{r}_{E}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}_{E}\right|^{3}} - \frac{Gm_{M}\left(\boldsymbol{r}-\boldsymbol{r}_{E}-\boldsymbol{r}_{EM}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}_{E}-\boldsymbol{r}_{EM}\right|^{3}} - \frac{Gm_{A}\left(\boldsymbol{r}-\boldsymbol{r}_{A}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}_{A}\right|^{3}}.$$
(1)

Здесь *r*, *r_E*, *r_A* – гелиоцентрические радиусвекторы космического аппарата, Земли и Марса, соответственно; *r_{EM}* – геоцентрический радиусвектор Луны; *m_S*, *m_E*, *m_M* и *m_A* – массы Солнца, Земли, Луны и Марса, соответственно; *v_E* – средняя долгота Земли; ω_E – угловая скорость орбитального движения Земли, равномерно вращающейся по круговой орбите вокруг Солнца [2]. Орбиты Луны и Марса также считаем круговыми, а их средние долготы пропорциональны *v_E*. В данной небесномеханической модели *v_M*, *v_A* – средние долготы Земли, Луны и Марса, соответственно; G – гравитационная постоянная. Радиусы Земли, Луны и Марса равны соответственно:

$$R_{E} = \frac{6371}{149597888.999} \text{a.e.} = 0.00004258749935 \text{ a.e.},$$

$$R_{M} = \frac{1737.4}{149597888.999} \text{a.e.} = 0.00001161380025 \text{ a.e.},$$

$$R_{A} = \frac{3389.5}{149597888.999} \text{ a.e.} = 0.00002265740528 \text{ a.e.} [3].$$

Начало отсчета средних долгот рассматриваемых тел совпадает с начальным положением этих тел. Используется следующая система единиц измерений: единица длины соответствует 1 астрономической единице, единица массы равна массе Солнца, единица времени равна 1 звездному году, *v*_E, *v*_M, *v*_A измеряются в радианах [4].

В данной работе dV_{ESKE} – начальная скорость космического аппарата с поверхности Земли относительно Солнца, представляет собой сложение скоростей Земли относительно Солнца и космического аппарата относительно Земли. $dV_{ESKE}=dV_{ES}+dV_{KE}$, где dV_{ES} – скорость Земли относительно Солнца, dV_{KE} – начальная скорость космического аппарата относительно Земли. Подберем такие начальные условия средних долгот Луны и Марса, при которых космический аппарат, стартующий с Земли, будет иметь минимальную начальную скорость и долетит до Марса [5]. Тогда для начальных условий: $v_{E0}=0$ рад, $v_{M0}=2,230985$ рад, $v_{A0}=1,002$ рад, $x_0=1+R_E$ а.е., $y_0=0$ а.е., $dV_{ES}=29780$ м/с, $dV_{KE}=11847$ м/с, траектория космического аппарата представлена на рис. 1. Изменение расстояния между Солнцем и космическим аппаратом (в зависимости от v_E) показано на рис. 2.

- **Рис. 1.** Траектория движения космического annapama относительно Солнца: v_{Emax}=4,43747 рад. максимальное значение средней долготы Земли
- **Fig. 1.** Trajectory of the spacecraft movement relative to the Sun: v_{Emax} =4.43747 rad. maximum value of the Earth's average longitude

Рис. 2. Расстояние между Солнцем и космическим annapaтом в астрономических единицах: v_{Emax}=4,43747 рад. – максимальное значение средней долготы Земли

Fig. 2. Distance between the Sun and the spacecraft in astronomical units: v_{Emax}=4.43747 rad. – maximum value of the Earth's average longitude

Подберем такие начальные условия средних долгот Луны и Марса, при которых космический аппарат, стартующий с Земли с третьей космической скоростью, сблизится с поверхностью Луны и долетит до Марса. Для начальных условий: $v_{E0}=0$ рад, $v_{M0}=1,75876$ рад, $v_{A0}=0,71663$ рад, $x_{0}=1+R_{E}$ а.е., $y_{0}=0$ а.е., $dV_{ES}=29780$ м/с, $dV_{KE}=16652,01$ м/с, траектория космического аппарата представлена на рис. 3. Изменение расстояния между Солнцем и космическим аппаратом (в зависимости от v_{E}) показано на рис. 4.

Рис. 3. Траектория движения космического annapama относительно Солнца. v_{Emax}=1,335415 рад. – максимальное значение средней долготы Земли

Fig. 3. Trajectory of the spacecraft movement relative to the Sun. v_{Emax} =1.335415 rad. – maximum value of the Earth's average longitude

Рис. 4. Расстояние между Солнцем и космическим аппаратом в астрономических единицах. v_{Emax}=1,335415 рад. – максимальное значение средней долготы Земли

Fig. 4. Distance between the Sun and the spacecraft in astronomical units. v_{Emax}=1,335415 rad. – maximum value of the Earth's average longitude

Теперь подберем такие начальные условия средних долгот Луны и Марса, а также начальную скорость космического аппарата, при которых космический аппарат, стартующий с Земли, сблизится с поверхностью Луны и долетит до Марса примерно за месяц. Для начальных условий: $v_{E0}=0$ рад, $v_{M0}=1,56065$ рад, $v_{A0}=0,68039$ рад, $x_0=1+R_E$ а.е., $y_0=0$ а.е., $dV_{ES}=29780$ м/с, $dV_{KE}=42000$ м/с, траектория космического аппарата представлена на рис. 5. Изменение расстояния между Солнцем и космическим аппаратом (в зависимости от v_E) показано на рис. 6.

Рис. 5. Траектория движения космического annapama относительно Солнца. v_{Emax}=0,553083 рад. – максимальное значение средней долготы Земли

Fig. 5. Trajectory of the spacecraft movement relative to the Sun. v_{Emax} =0.553083 rad. – maximum value of the Earth's average longitude

Рис. 6. Расстояние между Солнцем и космическим аппаратом в астрономических единицах. v_{Emax}=0,553083 рад. – максимальное значение средней долготы Земли

Fig. 6. Distance between the Sun and the spacecraft in astronomical units. v_{Emax} =0.553083 rad. – maximum value of the Earth's average longitude

Зная угол, на который повернулась Земля относительно старта космического аппарата с поверхности Земли, можно посчитать:

- время, за которое космический аппарат, стартующий с минимальной скоростью, приблизится к поверхности Луны (*v*_{E11}=0,0165888 рад.= = 0.0165888 рад.:365.2564 суток = 0,964346119 суток≈23 часа 8 минут 39,5 секунд);
- время, за которое космический аппарат, стартующий с минимальной скоростью, долетит до Марса после сближения с поверхностью Луны ($v_{E21}-v_{E11}=4,43747$ рад.-0,0165888 рад.=4,4208812 рад. $=\frac{4.4208812 \text{ рад} \cdot 365,2564 \text{ суток}}{2\pi}=256,996264 \text{ суток}\approx 8$ месяцев 16 суток 23 часа 54 минуты 37 секунд);
- общее время полета космического аппарата, стартующего с минимальной скоростью, от поверхности Земли до Марса составит (*v*_{E21}=4,43747 рад.= 4.43747 рад.:365,2564 суток = 257,96061 суток≈8 месяцев 17 суток 23 часа 3 минуты 17 секунд);
- время, за которое космический аппарат, стартующий с третьей космической скоростью, приблизится к поверхности Луны (*v*_{E12}=0,00605925 рад.=0,352238512 су-2π
 вад.=2π
 2π
 скунд);
- время, за которое космический аппарат, стартующий с третьей космической скоростью, долетит до Марса после сближения с поверхностью Луны (*v*<sub>222-*v*_{E12}=1,335415 рад. 0,00605925 рад.=
 =1,32935575 рад.=^{1.32935575 рад.•365,2564 суток}/_{2π}
 =77,2785891 суток≈2 месяца 17 суток 6 часов 41 минута 10 секунд);
 </sub>
- общее время полета космического аппарата, стартующего с третьей космической скоростью, от поверхности Земли до Марса составит (*v*_{E22}=1,335415 рад.= 1.335415 рад.≤2π = =77,6308276 суток ≈2 месяца 17 суток 15 часов 8 минут 23,5 секунды);
- время, за которое космический аппарат, стартующий со скоростью 42 км/с, приблизится к поверхности Луны (*v*_{E13}=0,001886 рад.= =<sup>0.001886 рад.·365.2564 суток = =0,109637634 суток≈2 часа 37 минут 53 секунды);
 </sup>
- время, за которое космический аппарат, стартующий со скоростью 42 км/с, долетит до Марса после сближения с поверхностью Луны (*v*_{E23-}*v*_{E13}=0,553083 рад.-0,001886 рад.=0,551197 рад.=0.551197 рад.=0.551197 рад.=2π
 ал славания с поверхностью луны (*v*_{E23-}*v*_{E13}=0,553083 рад.-0,001886 рад.=0,551197 рад.=0.551197 рад.=2π
- общее время полета космического аппарата, стартующего со скоростью 42 км/с, от поверхности Земли до Марса составит (v_{E23}=0,553083)

рад.= $\frac{0.553083 \text{ рад.} \cdot 365,2564 \text{ суток}}{2\pi}$ =32,1520209 су-

ток≈1 месяц 2 суток 3 часа 38 минут 55 секунд). Сравнивая эти три траектории перелета с Земли

к Марсу, можно сделать вывод о том, что они имеют свои преимущества и недостатки.

При полете к Марсу с начальной скоростью 11847 м/с за примерно 258 суток преимуществом будет низкий расход топлива и низкие финансовые затраты при условии, что на борту не окажется людей, иначе финансовые затраты увеличатся из-за долгого перелета, так как придется брать на борт больше кислорода, еды, а также обеспечить длительную радиационную защиту на борту космического аппарата. Кроме того, преимуществом такого перелета будет большая полезная нагрузка и маленькая скорость относительно Солнца при столкновении с космическим мусором. Недостатком такого полета к Марсу является длительность в 258 суток.

При полете к Марсу с начальной скоростью 42 км/с за примерно 32 суток преимуществом будет являться быстрый перелет, что делает эту миссию более привлекательной для полета людей на борту космического аппарата [6]. Но при высокой начальной скорости будет меньше полезная нагрузка, а значит, удастся взять меньше полезного груза на борт космического аппарата, будут выше финансовые затраты из-за огромного расхода топлива, а также выше относительная скорость столкновения с космическим мусором, что может привести к повреждению космического аппарата и даже к нештатной разгерметизации летательного аппарата при определенных условиях [7].

При полете к Марсу с начальной скоростью 16652,01 м/с за примерно 78 суток удастся сбалансировать все перечисленные ранее преимущества и недостатки перелетов.

Теперь представим дифференциальное уравнение движения тела с ничтожно малой массой в форме (2) – с одной независимой переменной v_E для расчета одноимпульсного полета к Урану.

$$\left(\frac{d^{2}\boldsymbol{r}}{d\boldsymbol{v}_{E}^{2}}\right)\omega_{E}^{2} = -\frac{Gm_{Sun}\boldsymbol{r}}{\boldsymbol{r}^{3}} - \frac{Gm_{E}\left(\boldsymbol{r}-\boldsymbol{r}_{E}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}_{E}\right|^{3}} - \frac{Gm_{M}\left(\boldsymbol{r}-\boldsymbol{r}_{M}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}_{M}\right|^{3}} - \frac{Gm_{Y}\left(\boldsymbol{r}-\boldsymbol{r}_{Y}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}_{Y}\right|^{3}} - \frac{Gm_{S}\left(\boldsymbol{r}-\boldsymbol{r}_{S}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}_{S}\right|^{3}} - \frac{Gm_{U}\left(\boldsymbol{r}-\boldsymbol{r}_{U}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}_{U}\right|^{3}}, \quad (2)$$

где r, r_E, r_M, r_Y, r_S и r_U – гелиоцентрические радиусвекторы космического аппарата, Земли, Марса, Юпитера, Сатурна и Урана, соответственно; m_{Sun} , m_E, m_M, m_Y, m_S и m_U – массы Солнца, Земли, Марса, Юпитера, Сатурна и Урана, соответственно; v_E – средняя долгота Земли; ω_E – угловая скорость орбитального движения Земли, равномерно вращающейся по круговой орбите вокруг Солнца. Орбиты Марса, Юпитера, Сатурна и Урана также считаем круговыми, а их средние долготы пропорциональны v_E . В данной небесномеханической модели v_M , v_Y , v_S , v_U – средние долготы Марса, Юпитера, Сатурна и Урана, соответственно.

Согласно вычислениям, для модели семи тел в международной системе единиц третья космическая скорость для тел, находящихся вблизи поверхности Земли, составляет 16652,01 м/с [8].

Подберем такие начальные условия средних долгот Земли, Марса, Юпитера, Сатурна и Урана, при которых космический аппарат, стартующий с Земли с третьей космической скоростью, долетит до Урана, сближаясь с поверхностями Марса и Юпитера. Тогда для начальных условий: $v_{E0}=0$ рад., $v_{M0}=0,7324217$ рад., $v_{T0}=1,81700711$ рад., $v_{S0}=2,1741$ рад., $v_{U0}=3,25878859$ рад., $x_0=1+R_E$ а.е., $y_0=0$ а.е., $dV_{ES}=29780$ м/с, $dV_3=16652,01$ м/с, траектория космического аппарата представлена на графике (рис. 7). Минимальное расстояние между космическим аппаратом и планетами: Марсом, Юпитером, Ураном (в зависимости от v_E), показано на графиках (рис. 8–10, соответственно).

Расчет времени одноимпульсного полета космического аппарата от Земли до конечной точки в модели ограниченной плоской круговой задачи семи тел осуществляется по следующей формуле:

> $t = \frac{v_E \cdot T_E}{2 \cdot \pi} \approx \frac{14.887841 \text{ рад.} \cdot 365.2564 \text{ суток}}{2 \cdot \pi} \approx$ ≈865 суток≈2 года 4 месяца 15 дней.

- Рис. 7. Траектория движения космического аппарата относительно Солнца: x значение координаты на горизонтальной оси; y значение координаты на вертикальной оси; v_E=14,9 рад. максимальное значение средней долготы Земли
- **Fig. 7.** Trajectory of the spacecraft movement relative to the Sun: x coordinate value on the horizontal axis; y coordinate value on the vertical axis; vE=14.9 rad. maximum value of the Earth's average longitude

Рис. 8. Минимальное расстояние между космическим аппаратом и Марсом: rMK≈0,000022731 а.е. – значение расстояния; v_E≈1,3548671 рад. – значение средней долготы Земли

- Рис. 9. Минимальное расстояние между космическим аппаратом и Юпитером: rYK≈0,0006709155 а.е. – значение расстояния; v_E≈7,007237 рад. – значение средней долготы Земли
- Fig. 9. Minimum distance between the spacecraft and Jupiter: rYK≈0.0006709155 a.u. – distance value; v_E≈7.007237 rad. – value of the Earth's average longitude

- Рис. 10. Минимальное расстояние между космическим аппаратом и Ураном: rUK≈0,0001687 а.е. – значение расстояния; ve≈14,887841 рад. – значение средней долготы Земли
- Fig. 10. Minimum distance between the spacecraft and Uranus: rUK≈0.0001687 a.u. – distance value; v_E≈14.887841 rad. – value of the Earth's average longitude

На графике (рис. 7) видно, что после гравитационного маневра возле Юпитера траектория космического аппарата значительно изменится, так как масса Юпитера слишком велика, а значит, его гравитационное воздействие очень сильно. Гравитационные маневры нужны для того, чтобы изменить скорость космического аппарата без затрат какихлибо ресурсов, траекторию полета космического аппарата, а также большую полуось орбиты космического аппарата, кроме того увеличить или сократить время полета до конечной точки [9]. Для максимальной пользы необходимо, чтобы космический аппарат сблизился как можно сильнее с поверхностью небесного тела, но не коснулся ее [10].

Минимальное расстояние между космическим аппаратом и Ураном немного меньше радиуса этой планеты. Это означает, что космический аппарат войдет в атмосферу Урана.

Заключение

1. При сближении космического аппарата с поверхностью Луны (гравитационный маневр или грави-

СПИСОК ЛИТЕРАТУРЫ

- 1. Рой А.Э. Движение по орбитам. М.: Изд-во «Мир», 1981. 544 с.
- Перов Н.И., Ерохин А.А. Одноимпульсный полет космического аппарата от Земли к Луне и Марсу с возвращением к Земле // Математика и информатика, астрономия и физика, экономика и совершенствование их преподавания: Материалы конференции «Чтения Ушинского». – Ярославль: РИО ЯГПУ, 2017. – С. 223–228.
- 3. Параметры планет // National Aeronautics and Space Administration. URL: https://nssdc.gsfc.nasa.gov/planetary/ (дата обращения: 12.09.2023)
- Перов Н.И. О небесных телах, пересекающих орбиты Марса, Земли и Луны // Математика и информатика, астрономия и физика, экономика и совершенствование их преподавания: Материалы конференции «Чтения Ушинского». – Ярославль: РИО ЯГПУ, 2017. – С. 211–217.
- 5. Перов Н.И. Унифицированный метод определения предварительных орбит небесных тел по малому числу оптических наблюдений // Астрономический журнал АН СССР. 1989. Т. 66. Вып. 5. С.1093–1099.
- 6. Окунев А.В., Краев М.В. Двигатели для межзвездных перелетов // Актуальные проблемы авиации и космонавтики. 2010. Т. 1. № 6. С. 54–55.
- 7. Мюррей К., Дермотт С. Динамика Солнечной системы / Пер. с англ. под ред. И.И. Шевченко. М.: Физматлит, 2009. 588 с.
- Исаченков Н.Ю. Одноимпульсный полет космического аппарата с третьей космической скоростью от Земли к Юпитеру в рамках задачи шести тел // XXIV Всероссийская студенческая научно-практическая конференция Нижневартовского государственного университета. Материалы конференции / под общ. ред. Д.А. Погонышева. – Нижневартовск: Нижневартовский государственный университет, 2022. – С. 60–64.
- 9. Попов И.П. Элементы баллистического расчета при гравитационном маневре космического аппарата // Космические аппараты и технологии. 2021. Т. 5. № 2 (36). С. 77–81. DOI: 10.26732/j.st.2021.2.02
- 10. Воложанин П.А., Калашников А.С., Кучеренко А.Д. Численный анализ гравитационного взаимодействия трех тел при совершении гравитационного маневра // Актуальные проблемы авиации и космонавтики: Сборник материалов VII Международной научно-практической конференции, посвященной Дню космонавтики: в 3 т. Т. 1. Красноярск: Сибирский государственный университет науки и технологий имени академика М.Ф. Решетнева, 2021. С. 81–83.

REFERENCES

- 1. Roy A.E. Dvizhenie po orbitam [Orbital movement]. Moscow, Mir Publio house, 1981. 544 p.
- Perov N.I., Erokhin A.A. Odnoimpulsny polet kosmicheskogo apparata ot Zemli k Lune i Marsu s vozvrashcheniem k Zemle [Single-pulse flight of a spacecraft from the Earth to the Moon and Mars with return to Earth]. *Matematika i informatika, astronomiya i fizika, ekonomika i sovershenstvovanie ikh prepodavaniya. Materialy konferentsii «Chteniya Ushinskogo»* [Mathematics and computer science, astronomy and physics, economics and improvement of their teaching. Proceedings of the conference "Readings of Ushinsky"]. Yaroslavl, RIO YaGPU Publ., 2017. pp. 223–228.
- 3. Parametry planet [Parameters of the planets]. *National Aeronautics and Space Administration*. Available at: https://nssdc.gsfc.nasa.gov/planetary/ (accessed 12 September 2023).
- 4. Perov N.I. O nebesnykh telakh, peresekayushchikh orbity Marsa, Zemli i Luny [About celestial bodies crossing the orbits of Mars, Earth and the Moon]. *Matematika i informatika, astronomiya i fizika, ekonomika i sovershenstvovanie ikh prepodavaniya.*

тационная праща) происходит увеличение скорости космического аппарата относительно Солнца, которое позволяет достичь Марс быстрее.

- Минимальное время одноимпульсного перелета космического аппарата при минимальной скорости старта от Земли до планеты Марс составляет v_{E21}=257,96061 суток ≈8 месяцев 17 суток 23 часа 3 минуты 17 секунд.
- Время одноимпульсного перелета космического аппарата, стартующего с третьей космической скоростью, от Земли до Марса составляет v_{E22}=77,2785891 суток≈2 месяца 17 суток 6 часов 41 минута 10 секунд.
- 4. Начальная скорость, необходимая для одноимпульсного околомесячного перелета до Марса космического аппарата, стартующего с Земли, составляет 42 км/с.
- Время одноимпульсного перелета космического аппарата, стартующего с третьей космической скоростью, от Земли до Урана составляет примерно 865 суток ≈2 года 4 месяца 15 дней.

Materialy konferentsii «Chteniya Ushinskogo» [Mathematics and computer science, astronomy and physics, economics and improving their teaching. Proceedings of the conference "Readings of Ushinsky"]. Yaroslavl, RIO YaGPU Publ., 2017. pp. 211–217.

- 5. Perov N.I. Unifitsirovanny metod opredeleniya predvaritelnykh orbit nebesnykh tel po malomu chislu opticheskikh nablyudeniy [Unified method for determining preliminary orbits of celestial bodies from a small number of optical observations]. *Astronomicheskiy zhurnal AN SSSR*, 1989, vol. 66, Iss. 5, pp. 1093–1099.
- 6. Okunev A.V., Kraev M.V. Dvigateli dlya mezhzvezdnykh pereletov [Engines for interstellar travel]. *Aktualnye problemy aviatsii i kosmonavtiki*, 2010, vol. 1, no. 6, pp. 54–55.
- 7. Murray K., Dermott S. Dinamika Solnechnoy sistemy [Dynamics of the Solar System]. Moscow, Fizmatlit Publ., 2009. 588 p.
- 8. Isachenkov N.Yu. Odnoimpulsny polet kosmicheskogo apparata s tretyey kosmicheskoy skorostyu ot Zemli k Yupiteru v ramkakh zadachi shesti tel [Single-pulse flight of a spacecraft with the third escape velocity from Earth to Jupiter within the framework of the six-body problem]. XXIV Vserossiyskaya studencheskaya nauchno-prakticheskaya konferentsiya Nizhnevartovskogo gosudarstvennogo universiteta. Materialy konferentsii [XXIV All-Russian Student Scientific and Practical Conference of Nizhnevartovsk State University. Conference materials]. Ed. by D.A. Pogonyshev. Nizhnevartovsk, Nizhnevartovsk State University Publ., 2022. pp. 60–64.
- 9. Popov I.P. Elements of ballistic calculation for spacecraft gravity assist. *Spacecraft and technologies*, 2021, vol. 5, no. 2 (36), pp. 77–81. In Rus. DOI 10.26732/j.st.2021.2.02.
- 10. Volozhanin P.A., Kalashnikov A.S., Kucherenko A.D. Chislenny analiz gravitatsionnogo vzaimodeystviya trekh tel pri sovershenii gravitatsionnogo manevra [Numerical analysis of the gravitational interaction of three bodies during the gravitational slingshot]. Aktualnye problemy aviatsii i kosmonavtiki. Sbornik materialov VII Mezhdunarodnoy nauchno-prakticheskoy konferentsii, posvyashchennoy Dnyu kosmonavtiki: v 3 t. T. 1 [Current problems of aviation and astronautics. Collection of materials of the VII International Scientific and Practical Conference dedicated to Cosmonautics Day: in 3 volumes. Vol. 1.] Krasnoyarsk, Siberian State University of Science and Technology named after Academician M.F. Reshetnev Publ., 2021. pp. 81–83.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Никита Юрьевич Исаченков, магистрант Ярославского государственного университета им. П.Г. Демидова, Россия, 150003, г. Ярославль, ул. Советская, 14. isnickjust@gmail.com; https://orcid.org/0009-0000-2457-8980

Поступила в редакцию: 25.10.2023 Поступила после рецензирования: 21.11.2023 Принята к публикации: 14.12.2023

INFORMATION ABOUT THE AUTHORS

Nikita Yu. Isachenkov, Master's Student, Yaroslavl State University named after. P.G. Demidov, 14, Sovetskaya street, Yaroslavl, Russian Federation. isnickjust@gmail.com; https://orcid.org/0009-0000-2457-8980

Received: 25.10.2023 Revised: 21.11.2023 Accepted: 14.12.2023